Statistics on Water Point Failures

This is an ongoing compilation of statistics that shows that failure rates for water systems are still high after decades of intervention. Statistics are organized by year, starting with the most recent, and alphabetically by country.

Visit this page for sanitation failures.


  • Cambodia: SNV Cambodia found these results (see figure below) after surveying 1008 water points in Chum Kiri District (672 tubewells, 13 protected dug wells, 262 unprotected dug wells, and 94 community ponds):cambodia functionality








  • Ghana: Of 898 wells surveyed, 20% were not operational at the time of the study (World Vision, 2014).
  • Ghana: The Atebubu Water System, in the Brong Ahafo Region, served a group of eight urban communities with a total population of 32,000. The system was completely non-functional at the time of a visit—sand filters were overgrown with weeds, standpipes had been shut down, and the chlorinator appeared run down. Many residents now obtain water from boreholes installed by the district assembly or by NGOs. However, at the time of a visit 40% were broken (Ampadu-Boakye & Hebert, 2014).
  • Madagascar: Out of 186 communities visited, there is a very high rate of system breakdown: nearly half of all systems broke down in the previous year, and a third of them were reported not to have been fixed satisfactorily. So, by implication, one sixth (16.6%) of all rural water systems breaks down and are not properly fixed, per year.  While half of all systems were reported to be functional for the most recent year, a tenth didn’t work at all; systems worked for an average of nine months per year. Note that the survey sample was of systems that had been built or rehabilitated within the last five years. So, at any one time, around a quarter of the rural population of Madagascar has no safe water (UNICEF & WaterAid, 2014).


  • Afghanistan: of 30,182 water points surveyed, 35% were non-functional (DACAAR via WaterAid-IRC-RWSN Webinar, 2014).
  • Ethiopia: A survey of 57 diverse water schemes showed 38.6% were non-functional on the day of the visit (Welle & Williams, 2014).
  • Ghana: 21% of 1,509 water points were not functioning on the day of visit (Samani, Destina and Patrick Apoya, Sustainable Water Service Delivery Project: Study Findings, 2013 Water and Health Conference, Chapel Hill, NC).
  • Malawi: In a service level survey of 48 villages, it was surprising to note that 66% of MALDA handpumps installed one year ago failed both pump tests and were therefore recorded as being non-functional. The proportion of fully functional MALDAs was between 29% and 50% in all age cohorts (Shaw & Manda, 2013).
  • Nepal: The National Management Information Project shows that of 40,000 gravity flow schemes, 82% are not fully functional (Mahato, RWSN e-discussion, June 10, 2013).
  • Tanzania: national mapping shows 38% of 74,331 water points are not functional, and 7% are functional but need repair (Water Point Mapping Tanzania).
  • Tanzania: A survey of 43 taps and 4 cattle troughs showed that 11% were not functional on the day of the visit (Welle & Williams, 2014).
  • Uganda: 36% of 45 surveyed community managed well sites were not functional; another 24% were either semi-­functional needing minor repairs or minimally functional
    needing major repairs (Truelove, 2013).
  • Uganda:16% of rural improved water points were non-functional (MWE, Republic of Uganda, 2013).
  • Uganda: In Bundibugyo, 21% of water points are not functional on average. Some subcounties have functionality rates well above 90%, but others like Kanara and Bubandi have functionality rates as low as 33%. These non-functioning systems lead to dry tap stands, resulting in about 45,000 Bundibugyo residents who are reported to be covered but in reality have to walk long distances to the nearest alternative, often an unprotected water source. Bundibugyo has registered an outbreak of either cholera or typhoid fever or both every year for the past 3 years (SNV, 2013).
  • Uganda: Only about 7% of 377 surveyed households reported that their village hand pumps had never failed, while the rest reported that their pumps failed nearly every month (14.5%), about twice or more in a year (54%) or once a year (15.6%). Some of the non-functional water sources were considered  ‘landmarks’ by the village residents (Mugumya, 2013).
  • Uganda: A survey of 151 water schemes showed that 21.2% were not functional on the day of visit (Welle & Williams, 2014).


  • DR Congo: Out of 2,051 water points in three provinces – Bas Congo, Equateur and Kinshasa – non-functionality was highest in Bas Congo at 68%, 24% in Kinshasa and 14% in Equateur (see table below). In Bas Congo only 39% of functional water points provided safe drinking water while in Kinshasa it was just 32% (Hambadiahana & Tolsma, 2012. Water Point Mapping in DR Congo) (SNV, 2013).
    Percentages/Number Province Bas Congo Province Equateur Province Kinshasa
    Water Points




    Non-functional or partially functional protected water points




    Non-functional or partially functional boreholes




    Potability of protected water points




    Protected water points without management system




    Protected water points without a water payment mechanism




  • Ethiopia:A survey was carried out with 160 household in 16 water supply systems constructed by different organizations. In Mecha Woreda, 20 of the 21 systems (95%) installed without community support were not functioning while only 12 of the 142 systems (8%) installed with community failed (Beyene, 2012).
  • Ghana: In three districts (East Gonja, Akatsi, Sunyani West), more than 30% of the surveyed infrastructure was not functional, and as little as 2% was providing the basic level of service for which it was intended (Adank et al, 2012).
  • Haiti:A survey of 1096 water kiosks and 2,266 water fountains showed that more than half of existing water kiosks are out of service in four geographical departments: Nord (63%), Sud (60%), Grand’Anse (59%) and Artibonite (53%) and 41.6% of existing water fountains inventoried are not functional (DINEPA, 2013).
  • Sierra Leone: A comprehensive water point mapping exercise (more than 28,000 water points) in 2012 showed the rate of damage of public water points is high and rises rapidly with point age. Among points built in 2007, 31% are impaired, and 17% are broken down. Furthermore, up to 40% of protected in-use points providing insufficient water during the dry season (Sierra Leone Ministry of Water Resources, 2012).
  • South Sudan: 400 of 578 boreholes built between 2006 and 2012 under the Basic Services Fund were surveyed. 23.2% of surveyed boreholes were not fully functional. The main reasons for reduced functionality were difficulties with pumping and an objectionable taste or color. The 31% of the boreholes for which no information was received were mainly the inaccessible boreholes, or the boreholes constructed by NGOs that had withdrawn from the area. These may also have been the boreholes with a higher occurrence of breakdowns or reduced functionality (Leclert, 2014).
  • Sub-Saharan Africa: In a survey of 23 European Community-funded projects in six sub-Saharan countries (European Court of Auditors, 2012):
    • Overall, equipment was installed as planned and was in working order. However, fewer than half of the projects examined delivered results meeting the beneficiaries’ needs.
    • While the projects examined were sustainable in technical terms, for a majority of projects, results and benefits will not continue to flow in the medium and long term unless non-tariff revenue is ensured; or because of institutional weaknesses (weak capacity by operators to run the equipment installed).
  • Swaziland: A pilot water point mapping effort in 8 Tinkhundlas (sub-districts) beginning Nov 2010 showed that out of 2,689 water points, 58.6% are functional, 11.5% are partially functional, and 29.9% are non-functional (Government of the Kingdom of Swaziland Ministry of Natural Resources & Energy, Department of Water Affairs, Water & Sanitation Point Mapping Pilot Project Report 2012).
  • Tanzania: One in four public kiosks were not functional at the time of an interview of 324 residents of Dar es Salaam (Listening to Dar, 2012).
  • Uganda: 19% of 79,413 water points are not working. Shallow wells have the highest non-functionality rates (approximately 30%), while protected springs have the lowest non-functionality rate (approximately 88%). As many as 2,303 point water sources (2.9%) are considered abandoned, having been non-functional for five or more years (Nekesa & Kulanyi, 2012).
  • Uganda: On average, close to 70% of all households surveyed in all the eight districts access low or substandard water services (Triple-S, 2014).


  • Belarus: 14.5% of rural water supply systems do not meet microbial quality standards and 30.1% do not meet chemical standards (WHO, 2011).
  • Central African Republic: only 10% of the wells and boreholes provide safe water despite these being the main source of water for urban dwellers (Dominguez-Torres and Foster, 2011).
  • Dominican Republic: A sustainability assessment of 61 rural water systems found that 18% are unlikely to be sustainable (it is unlikely the community will be able to overcome significant challenges) (Schweitzer & Mihelcic, 2012).
  • Ethiopia: 25.5% of more than 93,000 water schemes across the country were non-functional according to the National Water Inventory (Debela, 2013)
  • Ethiopia: Of 91 water schemes in Farta and West Estie surveyed, 17.5% were not functioning and 10% were functioning with difficulties (Stawicki, 2012).
  • Kenya: Of 100 water systems assessed (built between 2006-2010), 75% are still in use. 45% are affected by minor technical issues, or even serious damages, although they have the potential to be remediated. 14% of the systems are non-functional (Welthungerlife, 2011).
  • Liberia: 40% of over 10,000 improved water points mapped nationally were failed or needed repair (Government of Liberia, 2014).
  • Liberia: The first systematic sampling of water points and study of water quality in Monrovia found that 57% of the water points were contaminated by E. coli, which is an indicator of widespread fecal contamination.  The health standard for E. coli is none present/detected. (How a City Gets its Drinking Water: A Case Study – Capital City of Monrovia, Liberia, Vincent W. Uhl, Ashish Daw and Jaclyn A. Baron, 2012)
    • 100% of the unprotected hand-dug wells sampled showed the presence of E. coli.
    • 75% of the kiosks sampled showed the presence of E. coli.
    • 67% of the LWSC city water taps sampled showed the presence of E. coli.
    • 52% of the protected hand-dug open wells fitted with hand pumps showed the presence of E. coli.
    • 44% of the drilled wells fitted with hand pumps showed the presence of E. coli.
  • Malawi: A survey of the water schemes in the early 1980s showed over 90% of taps were functioning, but now only 42.4% are functioning: in the Northern Region, 74% of 2305 taps from gravity-fed piped water schemes are non-functional; in the Central (1,465 taps) and Southern Regions (10,215 taps), 55% of the taps from piped water systems are non-functional (Ministry of Agriculture, Irrigation, Water and Development, 2011).
  • Mali: in four municipalities, non-functionality of “modern” water points ranged from 14 to 41% (Jones, 2013).
  • Rwanda: In a baseline survey of 126 water points in the District of Kicukiro, 50% of the water points had been down for more than 1 day in the last month, and 55% of the communities reported that they had no spare parts on hand for the water system (Water for People 2011).
  • Tanzania: see figure below
Functionality of rural water supply schemes by age (six districts in Tanzania)  WaterAid (2011) Sustainability Framework

Functionality of rural water supply schemes by age (six districts in Tanzania) WaterAid (2011) Sustainability Framework








  • Afghanistan: nationally, 45% of water supply systems in public schools need extensive repair or replacement (UNICEF, 2012).
  • Africa: RWSN estimated that only two out of three handpumps are working at any time (RWSN, 2010).
  • Ethiopia: Non-functionality of rural water schemes in 10 regions ranges from 18% to 35%, with a national average of 20% (Calaw, Ludi, and Tucker, 2013).
  • Kenya: 2010 pilot mapping showed that, of 1011 ‘improved’ water points (all source types), average rates of non-functionality were 28% (West Pokot), 32% (Kyuso), and 20% (Mbeere North) (SNV 2010).
  • Madagascar: Functionality of existing water points is 90% for boreholes according to a 2009 RWSN report; 20% according to a 2010 baseline survey of the USAID-funded RANO HamPivoatra Project.  Actual functionality rate is likely between 40 – 50% nationally (Annis, 2013).
  • Nepal:Out of 38,000 gravity flow water supply systems, about half are partly or totally defunct (Nepal Functionality Thematic Working Group, 2010).
  • Pakistan: In public schools nationally, 39% of the water supply systems need extensive repair or replacement (UNICEF, 2012).
  • Pakistan: An independent study of ADB’s assistance to rural water supply in the Punjab Province identified, among others, these major concerns (Asian Development Bank Independent Evaluation Group, 2009):
    • 20% of the subprojects are nonfunctional
    • only 43% of community based organizations responsible for subprojects are functional and their capacity remains weak.
  • Sierra Leone: A survey of all existing water access points across three districts (2,859 structures) found only 30% of the structures in place were found to be capable of delivering access to safe water throughout the year (Fondation Pro Victimis).
  • Uganda: 19% of water points across the country are non-functional based on the national water supply atlas (MWE, 2010).


  • Bangladesh: among 972,865 existing water options for arsenic mitigation, 29% are not active (Government of Bangladesh, 2009)
  • Kenya: Only 58% of rural water sources are functional (Kenya Ministry of Water & Irrigation. 2009. Sample Survey on Water Quality and Functionality of Water Systems mentioned here).
  • Tanzania: According to WaterAid (2009):
    • Nearly half (46%) of 65,000 public improved water points in rural areas are not functioning.
    • Two years after installation, already 25% of public improved water points are non-functional.
    • Up to 7.5 million rural Tanzanians lack access to clean and safe water due to functionality problems.
  • Zimbabwe: A study in Mt Darwin District found 38% of the boreholes studied not functioning. Average downtime for the boreholes was 3 weeks (University of Zimbabwe, 2009)
  • Multiple countries: Estimates for various countries in the table below from RWSN, 2009:
Angola 4500 30
Benin 6700 22
Burkina Faso 22400 25
Cameroon 9000 25
DRC 1500 67
Ethiopia 30046 35
Cote d’Ivoire 19500 65
Guinea 12500 20
Kenya 12000 30
Liberia 1350 31
Madagascar 2500 10
Malawi 19000 40
Mali 14200 34
Mozambique 17000 25
Niger 7175 35
Nigeria 80000 50
Sierra Leone 2500 65
Uganda 30000 20
Zambia 15000 32
Zimbabwe 38200 30
TOTALS 345071 36


    • Croatia: 70% customers of of 443 small water supply systems receive water that is not in compliance with the respective quality standards (WHO, 2011).
    • Ethiopia: Out of the 70 water supply schemes in Mirab Abaya Woreda, 30 (43%) were non-functional (Deneke & Abebe, 2008).
    • Malawi: 31% of the improved rural water points are not functioning (Bauman & Danert, 2008).
    • Mozambique: The percent of non-functioning water points remains around 20% (see figure below) (Jansz, 2011):

Source: Janusz, 2011

  • Nepal: A national survey of households in 36,038 wards found only 18% of the population with a water supply are served by well functioning water points/ systems; 39% are served by points that need minor repair, 12% by points that need major repair, 21% by points that need rehabilitation, 9% by points that need reconstruction, and 1.6% by points that cannot be rehabilitated (NMIP, 2011).
  • Tanzania: Mapping 55 of the 132 district showed that 43% of the water points were no longer working, and that 25% of the water schemes had become non-functional within two years of installation (SNV World, 2014).
  • Timor-Leste: An assessment of all (134) rural water supply systems in Covalima district found: of 54 piped systems, 44% were fully functional, 30% partially functional, and 26% not functioning. Of the 80 hand pumps, 11 were under construction, 41% of completed systems were fully functional and 59% not functioning (Oxfam, 2008).


  • Bolivia: in over 100 communities visited in the rural municipality of Tiraque, fewer than ten had no water system, 17 were functioning per Bolivia government norms, and the rest were providing sub-par services, requiring anywhere from complete rehabilitations to minor repairs to ensure water of adequate quantity, quality, and continuity was being provided to all citizens (Fogelberg, 2013).
  • Ethiopia: It has been estimated that 33% of rural water supply schemes are non-functional at any time (MoWR, 2007) (per Deneke & Abebe, 2008).
  • Ethiopia: 60% of the Somali region’s birkado [cement-lined underground cisterns] are damaged and unused, calling into question the building of new birkado versus rehabilitating existing structures (Nassef & Belayhun, 2012).
  • Germany: In Baden-Württemberg, 523 samples from approximately 13,500 private wells were analyzed in 2007; non-compliance rates for E. coli (an indicator of fecal contamination) and total coliforms were at 18% and 43%, respectively (WHO, 2011).
  • Macedonia: Local piped water supply systems, used by 54% of the rural population, had a bacteriological failure rate of 23%. Local (non-piped) water sources, used by 13% of the population had a bacteriological failure rate of 30% (WHO, 2011).
  • Malawi: 49% of all gravity flow system taps were not working (National Water Point Mapping, reported in Bauman & Danert, 2008)
  • South Africa: In a sample of water and sanitation projects in all nine provinces, the compliance level for 1067 completed household water projects was only 2.6% – more than 97% of the projects did not comply with policy requirements, norms and standards. The compliance level for 517 completed household sanitation projects was 0% – that is, none of the completed household sanitation projects complied with policy requirements, norms and standards (CSIR, 2007).
  • Sub-Saharan Africa: Figures collated by the Rural Water Supply Network in 2007 indicate an average rate of 36% non-functionality for hand pumps across 21 countries. This level of failure represents a total investment of between $1.2 and $1.5 billion in the last 20 years. (Triple-S, 2009)


  • Haiti: In Port-de-Paix there were no functioning public water sources in the city and 14 of 19 different sites throughout the city that investigators tested for water quality were bacterially contaminated (Center for Human Rights & Global Justice, 2007).
  • South Sudan: The Water Policy (2007) indicated that 30-50% of the water points are non-operational at any time in the different States (Leclert, 2014).


  • Ethiopia: A survey found that 29% of handpumps and 33% of mechanized boreholes in rural areas were not functioning because of maintenance problems. (UNDP, 2006)
  • Rwanda: An estimated one-third of the rural water infrastructure requires urgent rehabilitation (UNDP, 2006)
  • Uganda: 17% of rural improved water points were non-functional (MWE, Republic of Uganda, 2006).


  • Sub-Saharan Africa: Almost 40% of sub-Saharan handpumps are not working (Sutton, 2005).
  • Sub-Saharan Africa: It has been estimated that between 20% and 70% of installed handpumps are not functioning – see Figure 1 below. (RWSN)
Handpump failures in sub-Saharan Africa (source: RWSN)

Handpump failures in sub-Saharan Africa (source: RWSN)

  •  Swaziland: 22.9% (national) and 27.9% (Lubombo region, the study area) of the water schemes were non-functional (Government of Swaziland, Rural Water Supply Board, 2005).
  • Uganda: 18% of rural improved water points were non-functional (MWE, Republic of Uganda, 2006).
  • Zimbabwe:  Out of 817 deep boreholes, 65% were estimated to be out of order (Waterkeyn & Cairncross, 2005).


  • Ecuador: a sustainability study conducted by the Secretariat for Water found that 13% of the systems were sustainable, 29% had mild problems, 20% had severe problems, and 38% were broken down (mentioned in OAS).
  • India: 25% of India’s water infrastructure is believed to be in need of repair (Ray, I., 2004, “Water for all? Peri-urban and rural water delivery options: The case of India.” Presentation: UC Berkeley Energy and Resources Group Fall Colloquium Series, 6 October).
  • Peru: In Loreto Region, it is estimated that 34% of water systems do not function  (Calderon, J., 2004. Agua y saneamiento: El caso del Perú rural. Lima, Peru: ITDG.)
  • South Asia: The World Development Report estimates that more than one-third of existing rural water infrastructure is not functional (World Bank, 2004).
  • Sub-Saharan Africa: Sutton (2004) compiled data on non-functionality for several countries (see table below):
Country Percent water points non-functional
Benin 19
Burkina Faso 25
CAR 40
Chad 50
Cote d’Ivoire 64
DR Congo 60
Ecuador 38
Guinea 18
India 25
Kenya 50
Liberia 90
Malawi 40
Mali 35
Mozambique 26
Mozambique 35
Niger 35
Nigeria 50
Peru 34
Sierra Leone 35
South Asia 33
Tanzania 30


  • England & Wales: An analysis of data collected from 150 local water authorities covering approximately 35,000 microbial water quality results for approximately 11,200 private water supply sites from 1996–2003 showed that E. coli (an indicator of fecal contamination) was detected in 19% of samples, with at least one positive sample being detected at 32% of water supply sites (compared to 0.1% of samples from mains water supplies) (WHO, 2011).
  • Peru: In a study of 104 rural water systems, only 32% were deemed “sustainable”; 66% were deteriorated and 2% were broken down (WSP, 2003).
  • Uganda: 30% of rural improved water points were non-functional (MWE, Republic of Uganda, 2006).


  • Perua study by the National Water and Sanitation Programme (Pronasar 2001) revealed only 34.7% of rural water supply systems in rural areas was in good or fair condition (per CARE / WSP, 2005).


  • Kenya: In western Kenya, nearly 50% of borehole wells dug in the 1980s, and subsequently maintained using a community-based maintenance model,
    had fallen into disrepair by 2000 (Miguel & Gugerty, 2004).
  • South Africa: At any time, approximately 50% of handpumps are not working (Hazelton, 2000).


  • Czech Republic: Water quality data from approximately 1700 small public groundwater well supplies and 3300 private wells from the period 1991–1998 showed there was a non-compliance rate with health-related parameters of approximately 70% (WHO, 2011).


  • Scotland: Out of 1750 samples taken from private water supplies in Scotland between 1992 and 1998, 41% failed compliance for total coliforms, 30% failed for E. coli and 15% failed for nitrate. The combined failure rate was 48% (WHO, 2011).


  • Malawi: In 1997, a survey almost 900 tapstands found that more than 50% of them were not supplying water. This indicated a significant decline since the early 1980s when surveys showed fewer than 10% not functioning (Kleemeier, 2000).


  • Ghana:By the late 1980s and early 1990s, 33% of the water supply systems had deteriorated greatly or completely broken down due to inadequate funding to carry out maintenance and rehabilitation (Ghana Water Company).


  • India: Evaluation of a representative sample of 10 water points found that consumers are not receiving protected water of the required quality in any scheme evaluated (Somayajulu, B.V.S., and Rao, Y.R., 1990)

1985 and before

failure quote

(USAID, 1981. The Role of Women as Participants & Beneficiaries in Water Supply & Sanitation Programs)

  • Uganda: In 1980, UNICEF funded a national inventory of boreholes and found that, out of a national stock of 5,089, 75% were not working. An extensive rehabilitation program was undertaken, but three years later the percentage of non-working pumps had only decreased to 67.8% (IRC, 1993).

13 thoughts on “Statistics on Water Point Failures”

  1. Gary W Dancer said:

    I am very sad to read these figures.I am presently leding a project in Western Nepal and have attempted to secure its future by appointing a committee of local people to oversee the maintenance of plant etc when finished.I feel it is essential to have as much local input as possible.

  2. RANJIT K VERMA PP said:

    We need to educate on the causes of the failures. We should take extra precautionary steps to ensure sustainability.

  3. RANJIT K VERMA PP said:

    These reasons are good. But there are also factors such as:
    1) lack of sustainability of the aquifer (depletion of water levels on account of over exploitation of under ground water) There should be simultaneous and proper ongoing recharging of the underground water resources in absence of which the soil structure changes leading to its lessened water holding capacity next time the rain water goes down.
    2) Alienation from the project (Beneficiaries don’t get much involved much in the responsibility of maintenance).

  4. Thank you for compiling this data!!! It is a great resource and I appreciate your work!

  5. Thanasius Sitolo said:

    Good work though I would suggest the article takes official statistics in Malawi. For example, water point functionality in December 2013 was at 75 percent as reported by Sector Performance Report (GoM, 2013)

  6. Will Wanjala said:

    Great work though given figures in Kenya do not reflect the actual picture on the ground in rural areas!

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


Get every new post delivered to your Inbox.

Join 1,813 other followers